详细介绍: PVL-10KB日本共和KYOWA电压输送型压力传送器
性能
额定容量
|
1MPa
|
非线性
|
±0.5%RO或以内
|
滞后
|
±0.5%RO或以内
|
出力電圧
|
0~5V
|
环境特性
允许使用温度范围
|
-20~70℃
|
温度补偿范围
|
-10~60℃
|
零点温度影响
|
±0.05%RO/℃或以内
|
输出温度影响
|
±0.05%/℃或以内
|
电气特性
SN比
|
50dB或以上
|
负荷电阻
|
1kΩ或以上
|
放大器频率响应范围
|
DC~1kHz
|
电源
|
消耗电流 : 30mA或以下
电压 : DC12V(10.5~15V)
|
电缆
|
0.14mm2,4芯屏蔽氯丁橡胶铠装线30cm,外径6mm, 前端裸线
|
电缆引出方式
|
直出式
|
机械特性
安全过载
|
150%
|
重量
|
约85g(不含电缆)
|
材料
|
主机SUS金属质地,液体接触部位SUS630
|
保护等级
|
IP52 (IEC 60529)
|
安装螺栓
|
g3/8小螺栓
|
其它知识:
直流电流与交流电流的比较:
①输送相同功率时,直流输电所用线材仅为交流输电的2/3 ~1/2 。
直流电流采用两线制,以大地或海水作回线,与采用三线制三相交流输电相比,在输电线载面积相同和电流密度相同的条件下,即使不考虑趋肤效应,也可以输送相同的电功率,而输电线和绝缘材料可节约1/3 。
如果考虑到趋肤效应和各种损耗(绝缘材料的介质损耗、磁感应的涡流损耗、架空线的电晕损耗等),输送同样功率交流电所用导线截面积大于或等于直流输电所用导线的截面积的1.33倍。因此,直流输电所用的线材几乎只有交流输电的一半。同时,直流输电杆塔结构也比同容量的三相交流输电简单,线路走廊占地面积也少。
②在电缆输电线路中,直流电流没有电容电流产生,而交流输电线路存在电容电流,引起损耗。在一些特殊场合,必须用电缆输电.例如高压输电线经过大城市时,采用地下电缆;输电线经过海峡时,要用海底电缆.由于电缆芯线与大地之间构成同轴电容器,在交流高压输线路中,空载电容电流极为可观。一条200kV的电缆,每千米的电容约为0.2μF,每千米需供给充电功率约3×10 3 kW,在每千米输电线路上,每年就要耗电2.6×10 7 kW•h。而在直流输电中,由于电压波动很小,基本上没有电容电流加在电缆上。
③直流输电时,其两侧交流系统不需同步运行,而交流输电必须同步运行。交流远距离输电时,电流的相位在交流输电系统的两端会产生显著的相位差;并网的各系统交流电的频率虽然规定统一为50Hz,但实际上常产生波动。这两种因素引起交流系统不能同步运行,需要用复杂庞大的补偿系统和综合性很强的技术加以调整,否则就可能在设备中形成强大的循环电流损坏设备,或造成不同步运行的停电事故。在技术不发达的国家里,交流输电距离一般不超过300km,而直流输电线路互连时,它两端的交流电网可以用各自的频率和相位运行,不需进行同步调整。
④直流电流发生故障的损失比交流输电小。两个交流系统若用交流线路互连,则当一侧系统发生短路时,另一侧要向故障一侧输送短路电流。因此使两侧系统原有开关切断短路电流的能力受到威胁,需要更换开关。而直流输电中,由于采用可控硅装置,电路功率能迅速、方便地进行调节,直流输电线路上基本上不向发生短路的交流系统输送短路电流,故障侧交流系统的短路电流与没有互连时一样。因此不必更换两侧原有开关及载流设备。
在直流输电线路中,各级是独立调节和工作的,彼此没有影响。所以,当一极发生故障时,只需停运故障极,另一极仍可输送不少于一半功率的电能。但在交流输电线路中,任一相发生永久性故障,必须全线停电。另外提醒一下:在直流输电系统中,只有输电环节是直流电,发电系统和用电系统仍然是交流电。
交流电的优点主要表现在发电和配电方面:利用建立在电磁感应原理基础上的交流发电机可以很经济方便地把机械能(水流能、风能……)、化学能(石油、天然气……)等其他形式的能转化为电能;交流电源和交流变电站与同功率的直流电流和直流换流站相比,造价大为低廉;交流电可以方便地通过变压器升压和降压,这给配送电能带来极大的方便。这是交流电与直流电相比所具有的独特优势。(资料转载于互联网,仅作阅读参考,不做它用!)
|